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Abstract

Abstract

Space Filling Curves are frequently used in parallel processing applications to order
and distribute inputs while preserving proximity. Several different metrics have been
proposed for analyzing and comparing the efficiency of different space filling curves,
particularly in database settings. Here, we introduce a general new metric, called
Average Communicated Distance, that models the average pairwise communication
cost expected to be incurred by an algorithm that makes use of an arbitrary space
filling curve. For the purpose of empirical evaluation of this metric, we modeled the
communications structure of the Fast Multipole Method for n body problems.

Using this model, we empirically address a number of interesting questions
pertaining to the effectiveness of space filling curves in reducing communication,
under different combinations of network topology and input distribution settings. We
consider these problems from the perspective of ordering the input data, as well as
using space filling curves to assign ranks to the processors. Our results for these
varied scenarios point towards a list of recommendations based on specific knowledge
about the input data. In addition, we present some new empirical results, relating to
proximity preservation under the average nearest neighbor stretch metric, that are
application independent.
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Definitions

Definition 1 (SFC)
For our purposes, a Space–filling Curve (SFC) is a mapping from a multi–dimensional space to a
linear ordering that allows for unique indexing of the points in that space.

(a) Hilbert Curve H4 (b) Z–Curve Z4

(c) Gray Order G4 (d)
Row/Column–Major

Figure : An example illustration of the Space-Filling Curves considered in our study.
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Definitions

Earlier Work

• Linear Clustering of Objects with Multiple Attributes [10].

• Analysis of the Hilbert Curve for Representing two–dimensional
Space [11].

• Space–Filling Curves and their use in Designing Geomteric Data
Structures [2].

• Usefulness: Aluru, Hariharan, and Sevilgen
• Parallel Domain Decomposition [1].
• Compressed Octrees [8].
• Bottom-Up Construction [6].

• Analysis of the Clustering Properties of Hilbert Space–Filling Curve
[3].

• On the Optimality of Clustering Properties of Space–Filling Curves
[9].

10 / 40



SFCs for SCAs

Definitions

Earlier Work

• Linear Clustering of Objects with Multiple Attributes [10].

• Analysis of the Hilbert Curve for Representing two–dimensional
Space [11].

• Space–Filling Curves and their use in Designing Geomteric Data
Structures [2].

• Usefulness: Aluru, Hariharan, and Sevilgen
• Parallel Domain Decomposition [1].
• Compressed Octrees [8].
• Bottom-Up Construction [6].

• Analysis of the Clustering Properties of Hilbert Space–Filling Curve
[3].

• On the Optimality of Clustering Properties of Space–Filling Curves
[9].

11 / 40



SFCs for SCAs

Definitions

Earlier Work

• Linear Clustering of Objects with Multiple Attributes [10].

• Analysis of the Hilbert Curve for Representing two–dimensional
Space [11].

• Space–Filling Curves and their use in Designing Geomteric Data
Structures [2].

• Usefulness: Aluru, Hariharan, and Sevilgen
• Parallel Domain Decomposition [1].
• Compressed Octrees [8].
• Bottom-Up Construction [6].

• Analysis of the Clustering Properties of Hilbert Space–Filling Curve
[3].

• On the Optimality of Clustering Properties of Space–Filling Curves
[9].

12 / 40



SFCs for SCAs

Definitions

Earlier Work

• Linear Clustering of Objects with Multiple Attributes [10].

• Analysis of the Hilbert Curve for Representing two–dimensional
Space [11].

• Space–Filling Curves and their use in Designing Geomteric Data
Structures [2].

• Usefulness: Aluru, Hariharan, and Sevilgen
• Parallel Domain Decomposition [1].
• Compressed Octrees [8].
• Bottom-Up Construction [6].

• Analysis of the Clustering Properties of Hilbert Space–Filling Curve
[3].

• On the Optimality of Clustering Properties of Space–Filling Curves
[9].

13 / 40



SFCs for SCAs

Definitions

Earlier Work

• Linear Clustering of Objects with Multiple Attributes [10].

• Analysis of the Hilbert Curve for Representing two–dimensional
Space [11].

• Space–Filling Curves and their use in Designing Geomteric Data
Structures [2].

• Usefulness: Aluru, Hariharan, and Sevilgen
• Parallel Domain Decomposition [1].
• Compressed Octrees [8].
• Bottom-Up Construction [6].

• Analysis of the Clustering Properties of Hilbert Space–Filling Curve
[3].

• On the Optimality of Clustering Properties of Space–Filling Curves
[9].

14 / 40



SFCs for SCAs

Definitions

Earlier Work

• Linear Clustering of Objects with Multiple Attributes [10].

• Analysis of the Hilbert Curve for Representing two–dimensional
Space [11].

• Space–Filling Curves and their use in Designing Geomteric Data
Structures [2].

• Usefulness: Aluru, Hariharan, and Sevilgen
• Parallel Domain Decomposition [1].
• Compressed Octrees [8].
• Bottom-Up Construction [6].

• Analysis of the Clustering Properties of Hilbert Space–Filling Curve
[3].

• On the Optimality of Clustering Properties of Space–Filling Curves
[9].

15 / 40



SFCs for SCAs

Definitions

Nearest Neighbor Stretch

In order to try to capture the efficiency of SFC’s Xu and Tirthapura
introduced a Nearest Neighbor Metric and proved some asymptotic
results [8].

Figure : The Z−curve was shown to be within a constant factor of optimal for
any SFC.
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Definitions

Defintion 2 (ACD)

Definition

Given a particular problem instance, the Average Communicated Distance
(ACD) is defined as the average distance for every pairwise
communication made over the course of the entire application. The
communication distance between any two communicating processors is
given by the length of the shortest path (measured in the number of
hops) between the two processors along the network intraconnect.
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Definitions

Definition 3 (FMM)

Definition

The Fast Multipole Method (FMM) is an algorithm for computing the
interactions in an n body problem [3]. We modeled the communications
structure of this algorithm as a case study because it relies on computing
the Near Field Interactions (NFI) and Far Field Interactions (FFI)
separately. Each of these sets of computations has a different
communications profile and requires distinct analysis under the ACD
metric.
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Definitions

Research Questions

We addressed the following four research questions using our empirical models:

Q1) What is the nearest-neighborhood preservation efficacy achieved by different
particle–order SFCs?

Q2) What is the effect of different combinations of {particle-order, processor-order}
SFCs on the Average Communicated Distance metric?

Q3) What is the performance of each of the particle-order SFCs under the ACD
metric, for a given network topology? Similarly, what is the performance of each
of the network topologies under the ACD metric, for a given input distribution?

Q4) How does the Average Communicated Distance vary as a function of processor
size, input size and input distribution, for each SFC?
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Methodology

Methodology

By varying the input parameters and running large scale successive
experiments, we were able to generate meaningful results.
Some of the parameters included:

• Number of Points

• Number of Processors

• Underlying Distribution

• NFI Radius

• Space–Filling Curve for Point Separation

• Space–Filling Curve for Processor Ranking

• Spatial Resolution

• Network Topology
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Methodology

Probability Distributions

(a) Uniform
Distribution

(b) Normal
Distribution

(c) Exponential
Distribution

Figure : This figure shows examples of the two dimensional probability distributions considered
in this paper.
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Methodology

Ordered Points

(a) Hilbert Ordering (b) Gray Ordering

(c) Z Ordering (d) Row Major
Ordering

Figure : As an example of particle–ordering SFCs, this figure shows the linear order of the
exponentially distributed particles displayed in Figure 2(c) by each of the SFCs respectively. It is
interesting to observe the large “jumps” that occur in the orderings by the discontinuous curves,
(b), (c), and (d), especially along the lines of symmetry [9].
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Methodology

FMM Abstraction (NFI)

Figure : c©MathWorks 2013
Nearest neighbor radius communications are a frequent model of parallel
communication.
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Methodology

FMM Abstraction (FFI)

(a) Coarse Resolution (b) Finer Resolution

Figure : Interaction Lists: Figure showing two partitioned spatial resolutions. In the coarse
resolution image (a), the interaction list of node 0 is {2, 3, 6, 7, 8− 16}, or every node that it not
in its quadrant. However, the interaction list of node 6 is {0, 4, 8, 12, 13, 14, 15}. At the finer
resolution, nodes in the interaction list of x are marked with y and nodes in the interaction list of
a are marked with b.
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Methodology

Computing the ACD

To effectively characterize the communication efficacies of different SFCs
on to the FMM model, we study and evaluate the two interaction types
— near-field and far-field — separately. The initial operation of our
method is the same for either case and can be described as follows:
Given an initial distribution of n particles in a 2k × 2k spatial resolution:

1 Order the particles linearly with the specified particle–order SFC;

2 Partition the particles into p consecutive chunks of size n
p each;

3 Order the processors with the specified processor–order SFC (applies
only to mesh and torus topologies);

4 Distribute chunk i to processor i, for 1 ≤ i ≤ n.

For NFI, we compute the neighborhood of each particle and determine
the distance between each communication that occurs. For FFI, we use a
log–tree in each quadrant to contact each processor that contains at
least one particle in the quadrant.
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Methodology

Computing ACD (NFI)

For the near–field interactions:

5 For each particle x, construct a list of all neighbors y, of x, such
that d(x, y) ≤ r.

6 For each (x, y) pair, determine the communicated distance as the
shortest path distance along the network (possibly zero) between the
processor that contains x and the processor that contains y. Note
that this manner of calculating the distance renders our model
contention-unaware.

7 Output the sum of these communication distances for all (x, y) as
the ACD value corresponding to all near-field interactions.

26 / 40



SFCs for SCAs

Methodology

Computing ACD (FFI)

For the far–field interactions:

5 For each quadrant containing at least one particle, compute an
ordered list of all of the processors that contain at least one particle
in that quadrant.

6 Construct a log–tree (quadtree in 2D) connecting the processors in
each quadrant.

7 To capture the parent-child communication that happens during
interpolation and anterpolation, we compute the shortest path
distance along the network between the two corresponding
processors.

8 Construct the interaction list for each processor at each level of
resolution.

9 For each processor, compute the distance along the network between
that processor and each other processor in its interaction list.

10 Output the sum over all the communication distances —
Interpolation, Anterpolation, and Interaction List — as the ACD
value corresponding to all far-field interactions.
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Methodology

Generality of the ACD

Although we have modeled the FMM algorithm in order to demonstrate
the efficacy of the ACD metric, any communication bound parallel
application can be evaluated with this metric. By abstracting different
primitives of communications models, the ACD for most common types of
parallel communication such as all-to-all and broadcast can be computed
in advance for particular applications to allow algorithm designers to
select the appropriate SFCs for data separation and processor ranking.
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Results

A1) ANNS Results

(a) Standard ANNS (b) Large Radius ANNS

Figure : This figure shows the ANNS values [8] of the SFCs under consideration as the spatial
resolution varies. Expanding the radius (b) does not affect the relative ordering of the SFCs. This
confirms the theoretical calculations of Xu and Tirthapura on the Z and Row Major curves, and
suggests that proximity preservation is not the best measure of SFC effectiveness for scientific
computing [11].
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Results

A2) Main Results (NFI)

Table : A comparison of different particle/processor-order SFC combinations for NFI under
various distributions. The lowest ACD value within each row is displayed in boldface blue, while
the lowest ACD value within each column is displayed in red italics. The best option for each
distribution is displayed in bold green italics.

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 4.008 4.308 4.939 13.117
Z–Curve 5.486 5.758 6.573 18.127
Gray Code 5.802 6.010 6.970 19.220
Row Major 9.126 9.763 11.713 70.353

Table : Uniform Distribution
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Results

A2) Main Results (NFI) Continued

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 8.561 9.297 10.123 20.340
Z–Curve 11.003 11.551 12.984 26.842
Gray Code 11.881 12.595 13.249 28.188
Row Major 20.143 22.221 24.053 66.719

(a) Normal Distribution

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 5.238 5.654 6.271 14.943
Z–Curve 6.943 7.070 8.235 20.851
Gray Code 7.276 7.663 8.760 22.269
Row Major 12.483 13.017 15.289 61.227

(b) Exponential Distribution
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Results

A2) Main Results (FFI)

Table : A comparison of different particle/processor-order SFC combinations for FFI under
various distributions. The lowest ACD value within each row is displayed in blue boldface, while
the lowest ACD value within each column is displayed in red italics. The best option for each
distribution is displayed in bold green italics.

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 19.494 20.841 22.572 31.124
Z–Curve 24.217 24.793 27.787 37.709
Gray Code 24.622 25.446 27.997 39.282
Row Major 44.513 48.762 50.118 57.880

Table : Uniform Distribution
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Results

A2) Main Results (NFI) Continued

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 26.336 26.824 31.963 32.542
Z–Curve 29.160 28.036 34.241 36.663
Gray Code 29.449 27.981 31.909 37.291
Row Major 43.639 44.636 49.133 45.475

(a) Normal Distribution

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 18.960 19.841 23.007 31.368
Z–Curve 24.672 23.316 26.315 37.576
Gray Code 23.762 24.076 27.973 37.863
Row Major 42.447 44.067 46.872 50.963

(b) Exponential Distribution
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A3) Topology Comparison

(a) Near–Field Interactions (b) Far–Field Interactions

Figure : The charts show the results of comparing different network topologies for a) NFI and b)
FFI, respectively. All experiments were performed using 1, 000, 000 uniformly distributed particles
on a 4096× 4096 spatial resolution. This plot is representative of all the experiments we
performed to evaluate the topologies. It is important to note that quadtree structures have
disproportionately large issues with contention in high volume communications.

34 / 40



SFCs for SCAs

Results

A4) ACD Scaling

(a) NFI (b) FFI

Figure : These plots show ACD values for a) NFI, and b) FFI, as a function of the number of
processors and the SFC used. The input used was fixed at 1,000,000 uniformly distributed
particles. This demonstrates the effect scale on processor ranking SFCs. Some of the row–major
data has been excluded from these plots because for this SFC, the ACD values at larger processor
numbers were significantly higher than the other data–points.
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Results

Analysis

Our results point towards a set of reccomendations for designers of
parallel alogorithms for scientific computing. When the scientist has full
control over both the data distribution and processor ranking, using the
Hilbert Curve at both stages gives the lowest ACD values. Unfortunately,
such control is not always feasible or desirable, in which case we present
the following reccommendation for SFC selection based on the ACD
values:

{Hilbert ≈ Z} < Gray << Row-major.
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Results

Future Work and Extensions

We intend to further extend our results by considering the following extensions:

• Adding a weighting function to evaluate data intensive applications

• Extending our metric to consider contention based communications models

• Extending our evaluation to real world implementations and applications other than FMM.

• Providing a closed, asymptotic expression for the ANNS of more complex curves.

• One of the interesting notions encountered in this work is the mapping of points from a
multi–dimensional space to a 2D torus or mesh. This is unlike the traditional SFC problem,
and does not appear to have been explored yet in theory. In this paper, we used SFCs to
move from 2D to a linear ordering back to 2D, but certainly there appears to be no
restriction on a direct mapping into the processor space. This raises theoretical questions for
further study.

• Finally, while we expect the conclusions of most of the studies conducted in this paper to
extend to 3D, further experimentation is needed to corroborate such trends.
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Results

Conclusions

Our results empirically validate previously published theoretical results. In
addition, based on our results, we provided a list of recommendations
that could serve as benchmarks for effective use of SFCs in FMM-type
applications. Our findings suggest both theoretical avenues of inquiry for
future research and practical applications of particular SFCs, both for
distributing the input data among parallel processors, and for canonical
labeling of processors on a particular network topology, with an overall
goal of minimizing communication network usage. In particular, the ACD
metric presented here represents an important contribution to the study
of SFCs for scientific computing.
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